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A FAST MULTIGRID ALGORITHM FOR ENERGY MINIMIZATION
UNDER PLANAR DENSITY CONSTRAINTS∗
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Abstract. The two-dimensional layout optimization problem reinforced by the efficient space
utilization demand has a wide spectrum of practical applications. Formulating the problem as a
nonlinear minimization problem under planar equality and/or inequality density constraints, we
present a linear time multigrid algorithm for solving a correction to this problem. The method is
demonstrated in various graph drawing (visualization) instances.

Key words. layout problems, graph drawing and visualization, density constraints, constrained
optimization, geometric multigrid, full approximation scheme

AMS subject classifications. 65N55, 76M27, 90-08

DOI. 10.1137/090771995

1. Introduction. The optimization problem addressed in this paper is to find an
optimal layout of a set of two-dimensional (2D) objects such that (a) the total length
of the given connections between these objects will be minimal, (b) the overlapping
between objects will be as little as possible, and (c) the 2D space will be well used. This
class of problems can be modeled by a graph in which every vertex has a predefined
shape and area and each edge has a predefined weight. While the first two conditions
are straightforward, the third requirement can be made concrete in different ways.
To see its usefulness, consider, for example, the problem of drawing the “snake”-like
graph shown in Figure 1.1(a). Most graph drawing algorithms would draw it as a
line or a chord. In that case, when the number of nodes is big, the space is used
very inefficiently, and the size of the nodes must decrease. One possible efficient space
utilization for the graph “snake” is presented in Figure 1.1(b).

In many theoretical and industrial fields, this class of problems is often addressed
and actually poses a computational bottleneck. In this work, we present a multilevel
solver for a model that describes the core part of those applications, namely, the
problem of minimizing a quadratic energy functional under planar constraints that
bound the allowed amount of material (total areas of objects) in various subdomains
of the entire domain under consideration. A similar definition appears, for example,
in [6].

Given an initial arrangement, the main contribution of this work is to enable a
fast rearrangement of the entities under consideration into a more evenly distributed
state over the entire defined domain. This process is done by introducing a sequence
of finer and finer grids over the domain and demanding, at each scale, equidensity,
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Fig. 1.1. Possible ways to draw the “snake”-like graph: (a) when the drawing area is not used,
the size of the nodes must decrease; and (b) a clearer picture is obtained when the space is used
efficiently.

that is, meeting equality or inequality constraints at each grid square, stating how
much material it may (at most) contain. Since many variables are involved and since
the needed updates may be large, we introduce a new set of displacement variables
attached to the introduced grid points, which enables collective moves of many orig-
inal variables at a time, at different scales including large displacements. The use of
such multiscale moves has two main purposes: to enable processing in various scales
and to efficiently solve the (large) system of equations of energy minimization under
equidensity demands. The system of equations of the finer scales, when many un-
knowns are involved, is solved by a combination of well-known multigrid techniques
(see [3, 4, 17]), namely, the correction scheme for the energy minimization part and
the full approximation scheme for the inequality equidensity constraints defined over
the grid’s squares. We assume here that the minimization energy functional has a
quadratic form, but other functionals can be used via quadratization. The entire al-
gorithm solves the nonlinear minimization problem by applying successive steps of
corrections, each using a linearized system of equations.

Clearly, for each specific application, one has to tune the general algorithm to
respect the particular task at hand. We have chosen here to demonstrate the perfor-
mance of our solver in some instances of the graph visualization problem showing the
efficient use of the given domain. Let us review a few applications that have motivated
our research.

Graph visualization. This addresses the problem of constructing a geometric
representation of graphs and has important applications to many technologies. There
are many different demands for graph visualization problems, such as draw a graph
with a minimum number of edge crossings, or a minimum total edge length, or a
predefined angular resolution (for a complete survey, see [2]). The ability to achieve
a compact picture (without overlapping) is of great importance, since area-efficient
drawings are essential in practical visualization applications where screen space is one
of the most valuable commodities. One of the most popular strategies that does ad-
dress these questions is the force-directed method [8], which has a quadratic running
time if all pairwise vertex forces are taken into account. There are several successful
multilevel algorithms [11] developed to improve the method’s complexity. However, re-
ducing the running time in these models usually means a loss of information regarding
those forces.

Representation of higraphs. Higraphs, a combination and extension of graphs
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and Euler/Venn diagrams, were defined by Harel in [9]. Higraphs extend the basic
structure of graphs and hypergraphs to allow vertices to describe inclusion relation-
ships. Adjacency of such vertices is used to denote set-theoretic Cartesian products.
Higraphs have been shown to be useful for the expression of many different semantics
and underlie many visual languages, such as statecharts and object model diagrams.
The well-known force-directed method has been extended to enable handling the vi-
sualization of higraphs [10]. For small higraphs it has indeed yielded nice results;
but, because of its high complexity, it poses efficiency challenges when used for larger
higraphs.

Facility location problem. In this class of problems the goal is to locate a
number of facilities within a minimized distance from the clients. In many industrial
versions of the problem there exist additional demands, such as the minimization
of the routing between the facilities and various space constraints (e.g., the factory
planning problem) while being given a total area on which the facilities and clients
could be located (for a complete survey, see [7]).

Wireless networks and coverage problems. These have a broad range of
applications in the military, surveillance, environmental monitoring, and healthcare
fields. In these problems, having a limited number of resources (like antennae or
sensors), one has to cover the area on which many demand points are distributed and
have to be serviced. In many practical applications there are predefined connections
between these resources that can be modeled as a graph [12, 5].

The placement problem. The electronics industry has achieved phenomenal
growth over the past two decades, mainly due to the rapid advances in integration
technologies and large-scale systems design—in short, due to the advent of VLSI.
The number of applications of integrated circuits in high-performance computing,
telecommunications, and consumer electronics has been rising steadily and at a very
fast pace. Typically, the required computational power of these applications is the
driving force for the fast development of this field. The global placement is one of
the most challenging problems during VLSI layout synthesis. In this application the
modules must be placed in such a way that the chip can be processed at the detailed
placement stage and then routed efficiently under many different constraints. This
should be accomplished in a reasonable computation time, even for circuits with mil-
lions of modules, since it is one of the bottlenecks of the design process. For the most
recent survey of the placement techniques see [13].

This paper is organized as follows. The problem definition is described in section 2.
The multilevel formulation and solver are presented in section 3. Examples of graph
drawing layout corrections are demonstrated in section 4. Finally, in section 5, we
conclude and discuss possible future work.

2. Problem definition. Given a weighted undirected graph G = (V,E), let
vol(i) > 0 be the (rectangular) area of vertex (node) i ∈ V , i = 1, . . . , |V |, and wij

be the nonnegative weight of the edge ij between nodes i and j (wij = 0 if ij /∈ E).
Also, assume a 2D initial layout is given; that is, the center of mass of node i is
considered to be located at (x̃i, ỹi) within a given rectangular domain. The purpose
of the optimization problem we consider is to modify the initial assignment (x̃, ỹ) by
(ξx, ξy) so as to minimize the quadratic functional

(2.1) E(ξx, ξy) =
1

2

∑
ij∈E

wij

(
(x̃i + ξxi − x̃j − ξxj )

2 + (ỹi + ξyi − ỹj − ξyj )
2
)
,
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Fig. 2.1. Example of a grid G with 25 grid points and 16 squares. The grid points and squares
are labeled by pi and bold numbers, respectively.
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Fig. 2.2. Example of Y (s) for square 6. The total area of vertices overlapping with square 6 is
dashed.

subject to some equidensity demands on the area distribution of the nodes within the
given rectangle. To apply such constraints, we discretize the domain by a standard grid
G consisting of a set of squares S(G), where each square s ∈ S(G) is of area A = hxhy,
and hx and hy are the mesh sizes of G in the x- and y- directions, respectively (see
Figure 2.1). Denote by Y (s) the total area of the vertices overlapping with the square
s; that is, Y (s) is the sum over all the nodes coinciding with s, each contributing the
(possibly partial) area that overlaps with s (see Figure 2.2).

The planar constraints (i.e., the constraints that are distributed over the 2D
plane, where each constraint defines a demand regarding some bounded area) can
then simply state how much area is required to be in every square; that is, for each
square s ∈ S(G), the constraint is either Y (s) = M(s), or Y (s) ≤ M(s), where M(s)
is the number of node areas desired or allowed for square s.

The constrained optimization problem with equality or inequality formulation can
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thus be summarized by the following:

(2.2)
minimize E (given by (2.1))
subject to Y (s) = (≤)M(s) ∀s ∈ S(G).

3. The multilevel formulation and solver. The aim of the current work is to
provide a fast first-order correction to the given approximate solution; that is, we are
looking for such a displacement that would in some optimal sense (to be defined below)
improve the planar equidensity demands and/or decrease E. (Note that unconstrained
minimization of E will bring all nodes to overlap at a single point, and thus we may
often observe an increase in E upon removing some of the initial overlap.)

To enable a direct use of the multigrid paradigm, and motivated by the need to
perform collective moves of nodes (as explained in the introduction), we have actually
reformulated the problem (2.1), as described in section 3.1. The multilevel solver of
the (reformulated) system (3.10) below is introduced in section 3.2. This system of
equations actually has to be solved for a sequence of different grid sizes to enhance
the overall equidensity for a variety of scales, as presented in section 3.3.

3.1. Formulation of the correction problem. We have first introduced two
new sets of variables u and v that correspond to displacements in the horizontal and
vertical directions, respectively. These variables are located at the grid points P(G)
which are sequentially counted from 0 to |P(G)|−1, as shown in Figure 2.1. Each point
p ∈ P(G) is associated with two variables up and vp that influence the displacements
of all the nodes located in the (up to four) squares intersecting at p. For example, the
horizontal update of (the center of mass of) node j, depicted in Figure 2.1, is obtained
from points p12, p13, p17, and p18:

xj ← xj + α12,ju12 + α13,ju13 + α17,ju17 + α18,ju18,

where α12, α13, α17, and α18 are the standard bilinear interpolation coefficients (their
sum equals 1). The vertical coordinate yj is updated from the v variables using the
same coefficients.

For a node i, denote the set of four closest points in P(G) (the corners of the square
in which its center of mass is located) by c(i). The new quadratic energy functional
we would like to minimize for u and v given a current layout (x̃, ỹ) of G (i.e., the
coordinates of node i are initialized with (x̃i, ỹi)) is

E(u, v) =
1

2

∑
ij∈E

wij

[(
x̃i +

∑
p∈c(i)

αpiup − x̃j −
∑

p∈c(j)

αpjup

)2

(3.1)

+

(
ỹi +

∑
p∈c(i)

αpivp − ỹj −
∑

p∈c(j)

αpjvp

)2]
,

where αpi are the bilinear interpolation coefficients.
The reformulation of the equidensity constraint in terms of the displacement

variables relies on the rule of conservation of areas. The initial total amount of vertex
areas at each square equals the current actual amount of areas dictated by (x̃, ỹ). To
estimate the amount of areas flowing inside and outside a given square induced by the
u and v displacements, we assume the nodes are evenly distributed inside the squares.
Under this assumption it is easier to estimate the amount of area being transferred
between two adjacent squares, as explained below. Consider, for example, a square
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Fig. 3.1. The horizontal direction flows of area considered for the square s (colored in square
6) in the equidensity constraint (3.2).

s. Denote by Yr(l,t,b)(s) the total area of the overlap between the nodes and s’s right
(left, top, bottom) neighbor square. Let urt(rb,lt,lb)(s) be the u values at the top-right
(bottom-right, top-left, bottom-left) corner of s, as shown in Figure 3.1. To estimate
the amount of areas entering s from the right, we first calculate the average area (per
square unit) in both squares: (Y (s)+Yr(s))/2A. We have to multiply this by the actual
entering area (of nodes), which is a rectangle of height hy, the length of the border
between the two squares, and the width, which is the average of the u displacement
at the middle of that border, namely, (urt + urb)/2. Thus the overall contribution of
area from the right is approximated by

Y (s) + Yr(s)

2A · hy · urt(s) + urb(s)

2
.

A similar term is calculated at the left, and with v instead of u also at the top and
bottom. Note that if the assumed direction of flow is wrong, the resulting displacement
will just turn out to be negative.

The entire constraint for a square s stating that the net flow of areas into the
square should be equal to or be smaller than some demand M(s) minus the current
area in u is given below:

(3.2) eqd(s) =
Y (s) + Yr(s)

2A hy
urt(s) + urb(s)

2
− Y (s) + Yl(s)

2A hy
ult(s) + ulb(s)

2

+
Y (s) + Yt(s)

2A hx
vrt(s) + vlt(s)

2
− Y (s) + Yb(s)

2A hx
vrb(s) + vlb(s)

2
≤M(s)− Y (s).

(For a possibly more accurate calculation of these constraints see the end of section 5.)
Next, to enforce the natural boundary conditions on u and v, namely, to forbid

flows across the external boundaries, we simply nullify all corresponding up on the
right and left boundary points Bu(G), and vp on the bottom and top boundary points
Bv(G). Then the entire constrained optimization problem in terms of u and v and the
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initial approximation (x̃, ỹ) is given by

(3.3)

minimize E(u, v) (given by (3.1)
subject to eqd(s) = (≤)M(s)− Y (s) ∀s ∈ S(G);

if p ∈ Bu(G), then up = 0;
if p ∈ Bv(G), then vp = 0.

We will simplify the formulation of (3.3) by the concatenation of the two vectors u

and v into one: u = [{ui}|P(G)|−1
i=0 | {vi}|P(G)|−1

i=0 ]. We will also omit the boundary
conditions by directly replacing all variables in Bu(G)∪Bv(G) by 0, and so, from now
on, we will refer to E as

(3.4) E(u) =
1

2

∑
i,j

qijuiuj +
∑
i

liui + C,

where i, j run over all the indices in u \ Bu(G) \ Bv(G), C is a constant, and qij , li are
the coefficients calculated directly from the previous definition (3.1) of E. Similarly,
rewrite each eqd(s) in (3.2) as

(3.5) eqd(s) =
∑
i

asiui = (≤)bs,

where bs = M(s)− Y (s).
Denote by λs, s ∈ S(G), the Lagrange multiplier corresponding to the equiden-

sity constraint of square s. If all the constraints are equality ones, the Lagrangian
minimization functional is

(3.6) L(u, λ) = E(u) +
∑

s∈S(G)
λs(eqd(s)− bs).

So, we are looking for a critical point of the Lagrangian function, which is expressed
by the system of linear equations

(3.7) ∇L(u, λ) =
[∇uL(u, λ)
∇λL(u, λ)

]
= 0.

There are at least two factors that may cause (3.7) to be singular. First, the rank
of ∇L(u, λ) is always less than its size by at least 1. This arises from the equations
of equidensity constraints in (3.7): their sum always equals zero. The reason is that
under the boundary constraints the total number of in-flows is always equal to the
total number of out-flows. In fact, the second summand in (3.6) can be replaced by∑

s∈S(G)
(λs + Z)(eqd(s)− bs)

for any Z without changing the minimization of L since

Z
∑

s∈S(G)
(eqd(s)− bs) = 0.

Thus, what is important are not the values of λs but only their differences, and
the singularity can be treated by an additional constraint, say,

∑
s dsλs = 0, where
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ds = 1 ∀s ∈ S(G) (the introduction of ds is necessary for the recursion of the multilevel
solver; see section 3.2.1). The additional term in L(u, λ) is η

∑
s dsλs, where η is a

“pseudo-Lagrange” multiplier. The following proposition (with k = 1) motivates the
nonsingularity of L with

∑
s dsλs = 0.

Proposition 3.1. Given a symmetric n×n matrix A, for which rank (A) = n−k,
let xi, i = 1, . . . , k be an orthogonal basis of the null space of A, that is, Axi = 0.
Then the following block matrix B is nonsingular:

B =

(
A X
XT 0

)
,

where X = (x1, . . . , xk) is an n× k matrix of rank k.
Proof. Let y be any vector in R

n+k. Denote by y′ the first n components of y and

by y′′ the last k components, that is, y = ( y′

y′′ ). We will prove that if By = 0, then

y = 0. The vector By can be written in the following block form:

By =

(
Ay′ +Xy′′

XTy′

)
.

Multiplying Ay′ + Xy′′ = 0 by XT from the left implies that y′′ = 0, and hence

Ay′ = 0 and y′ =
∑k

i=1 αixi. Substituting the last relation into each of the last k rows

of B implies xT
j y

′ = xT
j

∑k
i=1 αixi = αjx

T
j xj = 0, and thus αj = 0 for j = 1, . . . , k,

yielding y′ = 0. Since y′ = 0 and y′′ = 0, we may conclude that y = 0 as needed.
The second kind of singularity in (3.7) may appear from possible empty squares.

This can be treated by adding a summand to (3.6) that minimizes the total sum of all
corrections β

∑
i u

2
i , that is, adds a 2β-term to the diagonal of ∇uL, where β is small

enough to cause only negligible change in a solution. This will prevent the inclusion
of zero-rows in ∇uL, while possibly also bounding the size of each correction in the
solver below.

To summarize, the pseudo-Lagrangian functional L for our correction problem
with equality constraint is
(3.8)

L(u, λ, η) =
1

2

∑
i,j

qijuiuj+
∑
i

liui+β
∑
i

u2
i+

∑
s∈S(G)

λs

(∑
i

asiui − bs

)
+ η

∑
s∈S(G)

dsλs,

leading to the following system of equations:

(3.9)

1

2

∑
j

qijuj + li + 2βui +
∑

s∈S(G)
λsasi = 0 ∀i s.t. ui ∈ u \ Bu(G) \ Bv(G),∑

i

(asiui − bs) + ηds = 0 ∀s ∈ S(G),
∑

s∈S(G)
dsλs = 0.

Since in real world situations the total area is usually bigger than the total area
of all the vertices, the redefined minimization problem under inequality constraints
will generally have the form

(3.10)
minimize E(u) (given by (3.4)),
subject to eqd(s) ≤ bs ∀s ∈ S(G) (given by (3.5)).
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Fig. 3.2. Geometric coarsening. The equidensity constraints of every four similarly patterned
squares at the fine level form one equidensity constraint at the coarse level.

3.2. Multilevel solver for problem (3.10). To solve the constrained mini-
mization problem (3.10), we use multigrid techniques: standard geometric coarsening,
linear interpolation, the correction scheme (CS) for the energy minimization, and the
full approximation scheme (FAS) for the equidensity inequality constraints; all are
presented in section 3.2.1. In addition, we have developed a fast window minimiza-
tion relaxation, as explained in section 3.2.2. The multilevel cycle is schematically
summarized in section 3.2.3 in algorithm 2D-layout-correction.

3.2.1. Coarsening scheme. When the geometry of the problem is known we
can choose a coarser grid by the usual elimination of every other line, as shown in
Figure 3.2. The correction computed at the coarse grid points will be interpolated
and added to the fine grid current approximation. Let us introduce the notation
distinguishing between fine and coarse level variables and functions. By lowercase and
uppercase letters we will refer to the variables, indexes, and coefficients of the fine
(ui, i, qj , etc.) and the coarse (UI , I, QJ , etc.) levels, respectively. The subscripts f
and c will be used to describe the energy Ef and Ec and pseudo-Lagrangian Lf and
Lc functions at the fine and the coarse levels, respectively.

Thus, the minimization part of the pseudo-Lagrangian (3.8) at the fine level is

(3.11) Ef =
1

2

∑
ij

qijuiuj +
∑
i

liui.

(Note that we have omitted the β term from the following derivation since it is merely
an artificial added term.) Given a current approximation ũ of the fine level solution
u and a correction function U calculated at the coarse level variables U, ũ will be
corrected by

(3.12) ũi ← ũi +
∑
I�i

αiIUI ,

where the notation
∑

I�i means that the sum is running over all coarse grid points
pI , from which standard bilinear interpolation is made to the fine grid point pi.

Expressing the fine level energy functional Ef in terms of the coarse variables by
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substituting (3.12) into (3.11) yields

Ef =
1

2

∑
ij

qij

(
ũi +

∑
I�i

αiIUI

)(
ũj +

∑
J�j

αjJUJ

)
+
∑
i

li

(
ũi +

∑
I�i

αiIUI

)

=
1

2

∑
IJ

QIJUIUJ +
∑
I

LIUI + C,

where QIJ =
∑

i∈I
j∈J

qijαiIαjJ , LI =
∑

j
i∈I

qij ũjαiI +
∑

i∈I liαiI , and C is a constant.

Thus, the coarse level energy functional will be of the same structure as the fine level
one, namely,

Ec =
1

2

∑
IJ

QIJUIUJ +
∑
I

LIUI .

For each fine square s the equidensity constraint eqd(s) is given by (3.5). The
coarse equidensity constraints are constructed by merging 2× 2 fine squares into one
coarse square S. The expression “s ∈ S” will refer to running over the four fine
squares s that form the coarse square S (see Figure 3.2). The Sth planar equidensity
constraint of the coarse level (in the case of equality constraints only) is obtained
again by the substitution of (3.12):∑

s∈S

∑
i

asiui −
∑
s∈S

bs =
∑
I

ASIUI −BS ,

where ASI =
∑

i∈I

∑
s∈S asiαiI and BS =

∑
s∈S(bs −

∑
i asiũi). Similarly (in the

case of equality constraints), the additional η-constraint over all squares at the coarse
level as inherited from the fine level is

∑
S DSΛS = 0, where DS =

∑
s∈S ds.

To complete the description of the coarse equations, we still need to transfer the
equidensity inequality constraints. For this purpose we will use the FAS, which is
the general multigrid strategy applied to nonlinear problems (see [3, 4, 17]). In fact,
there is no need for the FAS for the equality equidensity constraints since it is a
linear problem that can be solved by the regular CS. The FAS-like coarsening rules
are needed and applied only on the set of equations derived from the equidensity
inequalities. Thus, our scheme is a combination of the CS for the energy equations
derived from (3.11) and (3.12) and FAS-like rules for the equidensity equations.

To derive these equations, we need to calculate the residuals for both the fine and
the coarse grids. If Lf is the pseudo-Lagrangian of the fine level system defined by

(3.13) Lf = Ef +
∑
s

λs

(∑
i

asiui − bs

)
+ η

∑
s

dsλs,

where Ef is given by (3.11), then the uith residual of ∇Lf , where λ̃s is the current
value of the Lagrange multiplier λs, is

rEi = −li − 1

2

∑
j

qijũj −
∑
s

λ̃sasi.

Thus, the residual corresponding to the variable UI of ∇Lc (where ∇Lc is the coarse
level system of equations analogous to (3.13)) is

(3.14) RE
I =

∑
i∈I

αiIr
E
i ,
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where αiI are as in (3.12); that is, the fine-to-coarse transfer is the adjoint of our
coarse-to-fine interpolation. The residual of the sth equidensity constraint is

reqds = bs −
∑
i

asiũi − η̃ds,

where s runs over all fine squares and η̃ is the current value of η. Therefore, the coarse
equidensity residual of square S is

(3.15) Reqd
S =

∑
s∈S

reqds .

Finally the residual of the η-constraint is

rη = −
∑
s

dsλ̃s = RH .

Denote by LP (I) the linear part of the UIth equation in the system ∇Lc:

LP (I) =
1

2

∑
J

QIJUJ +
∑
S

ΛSASI .

From the FAS rule for the Ith coarse equation stating that LP (I) = RE
I + the current

approximation of LP (I), we can derive the Ith ∇Lc equation

(3.16)
1

2

∑
J

QIJUJ +
∑
S

ΛSASI − RE
I −

1

2

∑
J

QIJU
0
J −

∑
S

Λ0
SASI = 0,

where RE
I is given by (3.14), U0

J = 0, and Λ0
S = 1

4

∑
s∈S λ̃s. Similarly, the Sth square

coarse equation for the equality (inequality) constraint is

(3.17)
∑
I

ASIUI +HDS −Reqd
S −

∑
I

ASIU
0
I −H0DS = (≤)0,

where Reqd
S is given by (3.15). The last equation for the H-constraint is

(3.18)
∑
S

DSΛS −RH −
∑
S

DSΛ
0
S = 0.

Note that (3.16)–(3.18) are the coarse grid equations analogous to the system (3.9).
(A 2βUI term may be added to (3.16) for stability if needed.) The correction received
from the coarse level for the u variables is given by (3.12) and for the Lagrange
multipliers λ by

(3.19) λ̃s ← λ̃s + ΛS�s − Λ0
S�s.

3.2.2. Relaxation. In our multigrid solver, as usual, the relaxation process is
employed as the smoother of the error of the approximation before the construction
of the coarse level system and immediately after interpolation from the coarse level.
For this purpose we have developed the window relaxation procedure, which extracts
from the entire system small subproblems of m × m supersquares and solves each
separately, as explained below and summarized in SingleWindowSolver.
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Let W = {s ∈ S(G) | all squares within an m ×m supersquare} be a window of
squares. To solve the quadratic minimization problem in W , we fix at their current
position all u outside W , as well as all those which are on the boundary of W and
represent movement perpendicular to W . The minimization is done under the set of
equidensity constraints for the squares s ∈ W . The solution process for each single
window is a simplified version of the active set method [1] and is iterative. At each
iteration t, we first extract the set of squares St for which the respective inequality
equidensity constraints are violated or almost violated according to (3.5):

St = {s ∈ W | eqd(s) > bs − ε},

where ε > 0; we have used ε = 0.0001∗(the square’s area). Then the inequality con-
straints of St are set to equalities. Let PW be the set of all u indexes inside W
(including those on the boundary of W directing parallel to it). For every ui, i ∈ PW ,
we associate a correction variable δi and reformulate the pseudo-Lagrangian forW as
a functional of the δi variables analogous to (3.8):

(3.20) LW(δ, λ) =
1

2

∑
i,j∈PW

qij(ũi + δi)(ũj + δj) +
1

2

∑
i∈PW , j �∈PW

qij(ũi + δi)ũj

+
∑

i∈PW

li(ũi + δi) + β
∑

i∈PW

(ũi + δi)
2 +

∑
s∈St

λs

( ∑
i∈PW

asiũi − bs

)
,

where ũi is the current value of ui and the β term is added for stability with β = 1.
Solving ∇LW(δ, λ) = 0 we obtain the corrections δi for ũi, i ∈ PW , which confine the
respective active set variables to the boundary of the equality constraint manifold.
However, while accepting this correction, we may violate other inequality constraints
that were already satisfied at the previous iteration t − 1. This can be avoided by
accepting only a partial correction θδ, θ < 1. We continue to the next iteration t+ 1,
excluding from the redefined St+1 the set of satisfied (by equality) constraints from
St with negative Lagrange multipliers λs. The number of iterations is kept small; we
have used up to 6.

SingleWindowSolver(W , ũ)
begin
t = 0
Repeat until all constraints are satisfied or t < 6
If t = 0

St = {the violated equidensity constraints}
Else

St = {the violated equidensity constraints}\
{those in St−1 which satisfy equality and have λs < 0}

Solve ∇LW(δ, λ) = 0 and extract θ
Accept the correction ũ← ũ+ θδ
t← t+ 1

end

To achieve corrections for all variables, we cover by these windows the entire
area in red-black order [17]. For computational reasons we have chosen to apply this
relaxation for very small windows (of size 4 × 4 squares). To minimize the effects of
the boundary of the windows and to enforce the equidensity constraints over different
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windows, we scan the entire domain two more times: once with half-window size
shift in the horizontal direction and once in the vertical direction. Thus the overall
relaxation process covers the domain three times.

3.2.3. The multilevel cycle. Having defined the window relaxation, the inter-
polation, and the coarsening scheme, the multilevel cycle naturally follows. Starting
from the given approximation (x̃, ỹ), discretize the domain by a standard grid on
which the u variables are initially defined. Construct the system of equations (3.9),
and solve for the u variables as follows. After applying ν1 window relaxation sweeps,
define the coarser level equations for the coarser grid, apply ν1 window relaxation
sweeps there, and continue to a still coarser level. This process is recursively repeated
until a small enough problem is obtained. Solve this coarsest problem directly, and
start the uncoarsening stage by interpolating the solution of the coarse level to the
finer levels followed by ν2 window relaxation sweeps on the finer level. Repeat until
the correction to the original problem is obtained. This entire multilevel cycle, usually
referred to as the V-cycle, is summarized in procedure V-cycle-correction below,
where the superscript index refers to the level number. (We have used ν1 = ν2 = 3.)

V-cycle-correction(Gi, ui, Ci, λi, ∇Li)
begin
If Gi is a small enough grid
Solve the problem exactly

Else
Set ui = 0
Apply ν1 window relaxation sweeps
Construct Gi+1 the coarse level grid
Define Ci+1 to be the set of equidensity constraints
Initialize the system of equations ∇Li+1 given by (3.16)–(3.18)
Initialize ui+1 and λi+1

V-cycle-correction(Gi+1, ui+1, Ci+1, λi+1, ∇Li+1)
Interpolate from level i+ 1 to level i using (3.12) and (3.19)
Apply ν2 window relaxation sweeps

Return ui

3.3. The full multigrid external driving routine. The solution of (3.9) is
primarily dependent on the chosen grid size. To enforce equidensity at all scales, it can
be used within the full multigrid (FMG) framework. This is done by using a sequence of
increasing grid sizes (progressively finer mesh sizes), while employing a small number
of V-cycles for each grid size. Then, a new linear system can be formulated around
the new solution to obtain yet a new correction, and so forth. Thus, by small steps of
corrections, we solve the original nonlinear problem via the corrections calculated from
the linear system of equidensity constraints. For instance, we have tried to employ
grids of sizes 2, 4, 8, . . . up to a grid with the number of squares comparable to the
number of nodes in the graph. For each grid size the corresponding set of equations
(in terms of the displacement u) is solved either directly (for small enough grids) or by
employing the V-cycles described in section 3.2.3. In either case the obtained solution
u is interpolated back to the (x, y) variables, introducing the desired correction to
the original variables of the problem. We emphasize that the original problem (2.2)
is highly nonlinear, while the system of equations with corrections in terms of the
displacement u is linearized around the current solution (x̃, ỹ). Therefore, it might
happen that only a fraction should actually be taken from the u displacements when
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these (x̃, ỹ) are being updated (we have limited these updates to a maximum of half
the mesh size).

Various driving routines can actually be used: each chosen grid size may be solved
more than once (e.g., use grids 2, 2, 4, 4, 8, . . .); the entire sequence of grids may be
repeated (e.g., 2, 2, 4, 4, 8, . . . , 2, 2, 4, 4, 8, . . .), and so on. (See section 4 for examples.)
These parameters should in fact be optimized for each application according to the
concrete needs of the model. However, it should be remembered that the goal here
is to find a better minimum and a local minimum, not a global one. The process
thus should be stopped when no significant improvement is achieved anymore. Our
objective is compounded of both the energy functional and the quality of the equiden-
sity constraints in different grids, and thus it should be stopped when neither of the
above advances substantially. In our current code we have not yet included any such
automatic stopping criteria; we use only some predefined sequences.

The entire algorithm for the 2D layout correction is summarized below in algo-
rithm 2D-layout-correction, where the superscript 0 refers to the current chosen
grid size.

2D-layout-correction(graph G, current layout (x̃, ỹ))
begin
Apply for a sequence of grid sizes
Construct and initialize G0, u0

Define C0 to be the set of equidensity constraints
Initialize the system of equations ∇L0

V-cycle-correction(G0, u0, C0, λ0, ∇L0)
Update (x̃, ỹ) from u0

Return (x̃, ỹ)

3.4. Complexity of the algorithm and running times. The total com-
plexity of the algorithm with equality constraints depends on two main parts: the
complexity of the construction of the linear system and the size of the grid used for
the domain discretization. The construction of the linear system of equations is linear
in the number of edges in the graph since each node contributes to four u variables
and to four v variables; thus each edge appears in (at most) 32 different equations.
After the construction of the system, the running time of the V-cycle itself depends
on the finest grid size used for the discretization of the domain. In practice, there is
no need to create a discretization grid of linear size of more than twice

√|V |.
To show that, we have measured running times (of a standard C++ program on

a Lenovo laptop with 2.53GHz processor and 3GB RAM) for some of the hypergraphs
at the Peko benchmark [14] (Suite3) after translating them into graphs by replacing
each hyperedge by a clique, i.e., by taking all possible pairs of edges within. See
Table 3.1. We have used four different mesh sizes for each produced graph: 16× 16,
32 × 32, 64 × 64, and 128 × 128. The running times of one V-cycle for the equality
constraint algorithm are shown in Figure 3.3; clearly, the running time is linear in the
number of edges in the graph and in the number of grid points. The relation between
these two factors was calculated by least squares, showing that the best linearity is
seen when the number of edges is divided by 139.2 compared to the number of points
in the mesh. For example, for the largest graph we have run, Peko15, one V-cycle
with six relaxation sweeps (of 4 × 4 windows) at each level for grid size 128 × 128
took 7.5 seconds. We have further measured the time that three relaxation sweeps
take and found out that, as expected, it depends only on the number of grid points
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Table 3.1

These graphs were obtained from the Peko benchmark of hypergraphs at [14] (Suite3) by replac-
ing each hyperedge by all possible pairs of simple edges involved in it.

Graph Number of vertices Number of edges
Peko04 27938 206629
Peko09 54114 444351
Peko12 71595 731095
Peko14 148760 1068055
Peko15 162935 1594475

Fig. 3.3. Linear running times of one V-cycle of the equality constraint multilevel algorithm.
There are four marks for each graph which correspond (from the bottom-left to the top-right) to the
four different grid sizes used: 16 × 16, 32 × 32, 64 × 64, and 128 × 128. The relation between the
number of edges and the number of grid points was calculated by least squares.

and does not depend on the size of the original graph. In particular, three relaxation
sweeps for grid size 128×128 involve 127×127 different 4×4 windows and take about
0.4 seconds, while each 4× 4 window takes 2.5× 10−5 of a second.

We have actually written two versions for the algorithm, one for the equality con-
straints and one for the inequality ones. The first one has been more optimally coded,
while the second one has not. The main difference between the two algorithms is the
relaxation process, whose running time strongly depends on the algorithm for solving
one window. There exist many versions of well-known algorithms for the quadratic
minimization problem under linear inequality constraints (for a survey see [1]). How-
ever, since each window need be solved only to a first approximation (because of the
iterative nature of the overall algorithm), in order to keep the running time low, we
have implemented the above simple algorithm for approximately solving each single
window. It is clear that several parameters must for efficiency be kept very small.
For example, (1) the number of window relaxation sweeps should be fixed between
1 and 3; (2) the number of iterations t in SingleWindowSolver needs to be small,
say, t < 6; and (3) the size ofW in SingleWindowSolver is very robust; that is, the
same results can be obtained with sizes 4× 4, 8× 8, and 16× 16. We have used only
4 × 4, as it runs the fastest. With the above time measurements, an upper bound to
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the above Peko15 example (with t = 5 and three relaxation sweeps) is 11.8 seconds,
which includes the 7.5 seconds and (at the most) eight additional relaxation sweeps
(of three iterations each) at all levels.

4. Examples of graph drawing layout correction. As previously mentioned,
the graph drawing problem is of interest for many applications. Therefore, we have
chosen to demonstrate the abilities of our algorithm for this problem. In this section
we will present several results of the 2D layout correction algorithm using inequality
constraints. The set of examples is shown in Figure 4.1 and Figures 4.5–4.8, each
organized in two columns. The initial and final layouts of the graph are shown in the
same row, in the left and the right columns, respectively. Note that finalizing the “nice
graph” representation of these examples is beyond the scope of this work. The various
“beautifying” procedures used by different applications may, of course, be used at the
end of our cycles to enhance the visualization results.

(a1) (a2)

(b1) (b2)

(c1) (c2)

Fig. 4.1. Examples of the 2D layout of graphs with equal vertices.
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Fig. 4.2. Energy behavior of the mesh at Figure 4.1, row (c), when employing complete V-cycles
with 16 × 16 and 32× 32 alternately.
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Fig. 4.3. Energy behavior of window relaxation iterations ( 16× 16 grid) of the mesh at Figure
4.1, row (c).

The first example consists of a mesh graph with three holes (Figure 4.1, row (a)).
It is intended to demonstrate that the empty space stays empty, and the energy is thus
kept low. More complicated examples are shown in Figure 4.1, rows (b) and (c). The
initial optimal positions of the mesh’s vertices were randomly changed by independent
shifts in different directions within a distance d:

d ≤
{

2hx in example (b),
4hx in example (c),

where hx is the length of a square on the initially taken 32 × 32 grid, such that
the mesh size of the graph is actually 2hx. Let us call these meshes M1 and M2,
respectively. While the correction of M1 looks really nice, two switched vertices on
the right-hand side of M2 demonstrate a weak point in our algorithm that certainly
must be improved by a local “beautifying” procedure, which in general depends on
the real application. The initial layout (c1) is more complicated than (b1), while the
desired final layouts are similar.

A typical example of the energy behavior is presented in Figures 4.2–4.4. These
figures refer to the mesh example in Figure 4.1, row (c). The general energy minimiza-
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Fig. 4.4. Energy behavior of window relaxation iterations ( 16 × 16 and 32 × 32 grids) of the
mesh at Figure 4.1, row (c).

tion progress is shown in Figure 4.2. In this example the driving routine alternates
between two grid size V-cycles: each odd V-cycle solves the correction problem for
the 16 × 16 grid, while even V-cycles improve the previous iterations with the grid
32 × 32. Figures 4.3 and 4.4 show the energy behavior of the window relaxations
(without V-cycles) for 16× 16 grid iterations and alternately 16× 16 and 32× 32 grid
sizes, respectively. Clearly, the V-cycle algorithm is more powerful in minimizing the
energy than just employing the window relaxations.

A more complicated example is shown in Figure 4.5, in which the 64× 64 mesh
graph is randomly perturbed by vertex shifts (up to 2hx of a 64 × 64 grid), com-
pressed at the bottom-left corner and augmented by 50 randomly chosen edges (Fig-
ure 4.5(a)). The final result of the algorithm is presented in Figure 4.5(c), where
all vertices are placed almost at their optimal locations (note the different scales of
the two figures). We have used two FMG-cycles with two V-cycles at each level as
the main driving routine. Such a driving routine works with the following grid sizes:
2, 2, 4, 4, 8, 8, . . . , 128, 128, 2, 2, 4, 4, and so forth. After these two FMG-cycles the total
energy was very close to its real minimum, and additional iterations have only slightly
corrected the layout. If, however, for each grid size, instead of a V-cycle we use only
a relaxation sweep and this is repeated 1000 times, we end up with the picture shown
in Figure 4.5(b), which is clearly much different from the minimum. This example
shows the power of the V-cycles. The next experiment consists of the 64 × 64 com-
pressed mesh with three holes. The initial and final layouts are presented in Figures
4.6(a) and 4.6(b), respectively. These two examples show how the space is indeed well
utilized, and that the initial compressed configuration is stretched while maintaining
its structure.

Two additional examples demonstrate the layout corrections for graphs whose
vertices have nonequal volumes (see Figures 4.7 and 4.8). In both cases the initial
layout of these graphs was random.

It should be noted that whether or not the nodes are evenly distributed over the
domain depends mostly on the initial approximation. If, for example, in an extreme
example all nodes are initiated at the same spot, then it is obvious that they will
never be separated by the moves suggested in this paper. So, we assume that the
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Fig. 4.5. Example of the layout of the 64 × 64 mesh with additional random edges (note the
different scales of figure (a) compared with those of (b) and (c)): (a) starting from a compressed
and perturbed configuration at the bottom-left corner; (b) the resulting picture using only relaxation
sweeps; (c) the resulting picture using V-cycles.
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Fig. 4.6. Example of the 64 × 64 mesh with three-hole layout (note the different scales of the
two figures): (a) starting from a compressed and perturbed configuration at the bottom-left corner;
(b) the resulting picture using V-cycles.

initial approximation does not suffer severely from overlap among the nodes; then
the moves induced by the u variables are smooth and will usually remove some of the
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Fig. 4.7. Example of the 2D layout of a graph with nonequal volumes.

Fig. 4.8. An example of the 2D layout of a five-level binary tree with nonequal vertices.

overlap (as can be seen in Figures 4.7 and 4.8) while moving the nodes more evenly
through the domain, especially as finer and finer grids are used.

5. Conclusions and future work. We have presented a linear time multilevel
algorithm for solving a correction to the nonlinear minimization problem under planar
(in)equality constraints. By introducing a sequence of grids over the domain and a new
set of global displacement variables defined at those grid points, we formulated the
minimization problem under planar equidensity constraints and solved the resulting
system of equations by multigrid techniques. This approach enabled fast collective cor-
rections for the optimization objective components. We believe that this formulation
can open a new direction for the development of fast algorithms for efficient space uti-
lization goals. Among many possible motivating applications [2, 8, 9, 10, 7, 12, 5, 13]
we focused on the demonstration of the method on the graph visualization problem
with efficient space utilization demand.

We recommend this multilevel method as a general practical tool in solving,
possibly together with other tools, the nonlinear optimization problem under planar
(in)equality constraints.

It should, however, be remembered that what we have described in this paper
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is good only for obtaining a correction for the original problem given some first ap-
proximation. In general, to solve the entire problem, when no initial solution is given,
an FMG algorithm should be used. That is, a hierarchy of graphs is constructed for
the original graph, obtaining a first solution on the coarsest (smallest) graph (by a
direct solver or by an exhaustive search); then this solution is interpolated to finer
graphs until a solution for the original graph is obtained. In fact, while solving the
coarsest level, one can afford to take many solutions of this small graph (see [16]) and
pursue them to finer levels, eliminating those which are less suitable while proceeding
to finer and finer levels. This is still efficient enough while enabling a better sampling
of the minimization landscape and allowing the comparison of several local minima.
Such a hierarchy was introduced in our work on graph optimization problems [16] and
recently in our more sophisticated coarsening scheme [15].

Additional techniques should be added for dealing with too much overlap. In
such cases the algorithm will fail to separate the overlapping nodes, as it will apply
almost the same movement for all of them. A relaxation that would move each node
individually is thus needed. Also, to enhance the accuracy of the equidensity con-
straints (3.2), a more precise estimation for the amount transferred in between the
squares might be needed. This can be achieved by calculating the change in each
square’s area as a function of each node’s movement by actually applying a small
movement to each node and measuring the resulting influence on the relevant squares.
Preliminary results show that this is indeed more accurate and that it is mostly needed
when the squares are small compared with the nodes’ sizes, and that when the squares
are big and contain many nodes this is not really necessary.
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